Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS)) at position [0] we obtained the following new rules:
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(cons(x0, x1)), cons(y1, y2)) → A__AFTER(cons(mark(x0), x1), mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
A__AFTER(s(cons(x0, x1)), cons(y1, y2)) → A__AFTER(cons(mark(x0), x1), mark(y2))
A__FROM(X) → MARK(X)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2)) at position [0] we obtained the following new rules:
MARK(after(s(x0), y1)) → A__AFTER(s(mark(x0)), mark(y1))
MARK(after(cons(x0, x1), y1)) → A__AFTER(cons(mark(x0), x1), mark(y1))
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
A__FROM(X) → MARK(X)
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
MARK(after(cons(x0, x1), y1)) → A__AFTER(cons(mark(x0), x1), mark(y1))
MARK(after(s(x0), y1)) → A__AFTER(s(mark(x0)), mark(y1))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
MARK(after(s(x0), y1)) → A__AFTER(s(mark(x0)), mark(y1))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(after(s(x0), y1)) → A__AFTER(s(mark(x0)), mark(y1)) at position [1] we obtained the following new rules:
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(s(y0), 0)) → A__AFTER(s(mark(y0)), 0)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(s(y0), s(x0))) → A__AFTER(s(mark(y0)), s(mark(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
A__FROM(X) → MARK(X)
MARK(after(s(y0), 0)) → A__AFTER(s(mark(y0)), 0)
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
MARK(after(s(y0), s(x0))) → A__AFTER(s(mark(y0)), s(mark(x0)))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2))
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A__AFTER(s(s(x0)), cons(y1, y2)) → A__AFTER(s(mark(x0)), mark(y2)) at position [1] we obtained the following new rules:
A__AFTER(s(s(y0)), cons(y1, s(x0))) → A__AFTER(s(mark(y0)), s(mark(x0)))
A__AFTER(s(s(y0)), cons(y1, cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
A__AFTER(s(s(y0)), cons(y1, after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
A__AFTER(s(s(y0)), cons(y1, from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
A__AFTER(s(s(y0)), cons(y1, 0)) → A__AFTER(s(mark(y0)), 0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(s(y0)), cons(y1, cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
A__AFTER(s(s(y0)), cons(y1, after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(s(y0)), cons(y1, 0)) → A__AFTER(s(mark(y0)), 0)
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
A__AFTER(s(s(y0)), cons(y1, s(x0))) → A__AFTER(s(mark(y0)), s(mark(x0)))
A__FROM(X) → MARK(X)
A__AFTER(s(s(y0)), cons(y1, from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
A__AFTER(s(s(y0)), cons(y1, cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
A__AFTER(s(s(y0)), cons(y1, after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
A__AFTER(s(s(y0)), cons(y1, from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(after(from(x0), y1)) → A__AFTER(a__from(mark(x0)), mark(y1))
A__AFTER(s(from(x0)), cons(y1, y2)) → A__AFTER(a__from(mark(x0)), mark(y2))
The remaining pairs can at least be oriented weakly.
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
A__AFTER(s(s(y0)), cons(y1, cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
A__AFTER(s(s(y0)), cons(y1, after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
A__AFTER(s(s(y0)), cons(y1, from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( after(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__after(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( A__AFTER(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
a__after(0, XS) → mark(XS)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(from(X)) → a__from(mark(X))
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → cons(mark(X), from(s(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(s(y0), cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(s(y0), from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(0, y1)) → A__AFTER(0, mark(y1))
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
A__AFTER(s(s(y0)), cons(y1, cons(x0, x1))) → A__AFTER(s(mark(y0)), cons(mark(x0), x1))
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(s(y0), after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
A__AFTER(s(s(y0)), cons(y1, after(x0, x1))) → A__AFTER(s(mark(y0)), a__after(mark(x0), mark(x1)))
A__AFTER(s(s(y0)), cons(y1, from(x0))) → A__AFTER(s(mark(y0)), a__from(mark(x0)))
MARK(after(after(x0, x1), y1)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y1))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(0), cons(y1, y2)) → A__AFTER(0, mark(y2))
A__AFTER(s(after(x0, x1)), cons(y1, y2)) → A__AFTER(a__after(mark(x0), mark(x1)), mark(y2))
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.